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Abstract _. '

An identification procedure is proposed to identify the damage characteristics (location and

size of the damage) from dynamic measurements. This procedure was based on minimization of

the 'mean-square' measure of difference between measurement data (natural frequencies and mode

shapes) and the corresponding predictions obtained from the computational model. The procedure

is tested for simulated damage in the form of stiffness changes in a simple fixed-free spring-mass

system and symmetric cracks in a simply-supported Bernoulli-Eulcr beam. It is shown that when all

the mode information were used in the identification procedure it is possible to uniquely determine

the damage properties. Without knowing the complete set of modal information, a restricted region

in the initial data space has been found for realistic and convergent solution from the identification

process.

Introduction

There is a considerable body of research on identification problems, that is, the problem of

identifying the engineering properties or reconstructing the structural configuration of a vibrating

system from certain natural frequency spectra and/or corresponding mode shape. Such problems

were considered by Barcilon [1, 2], McLaughlin [3, 4], Gladwell [5-7], and Gladwell et al. [8]. Most

of these studies involve the determination of material properties fi'om natural frequencies, and

they emphasize the existence, uniqueness, and methods for determination of properties (termed

'reconstruction').

An detection procedure was developed by Shen and Taylor [9] to determine the crack character-

istics (location xc and size cr of the crack) of Bernoulli-Euler beams fl'om their dynamic response.

The idea of this procedure was related to methods of structural optimization. Specifically, the

structural damage was identified in a way to minimize one or another measure of the difference

between a set of data (measurements) Td, and the corresponding values for dynamic response Md

obtained by analysis of a model for the damaged beam. This may be expressed symbolically as the

following optimization problem:

min norrn(T_ - l_ld). (l)

Naturally, the minimization represented here is constrained by the equations which model the

physical system. Moreover, as indicated in the discussion by Shen and Pierre [10, 11], one can

note that the more modal information used for crack detection, the more accurate and reliable the

result that can be achieved. For practical purposes, the objective of Eq. (1) was formulated based

on a certain set of specific modes; specifically the first three modes are considered in the inverse

procedure.

In this study the corresponding to the mean-square measure of the norm, as shown in Eq. (1),

is examined. The identification process is based on minimization of the 'mean-square' measure of

difference between measurement data (natural frequencies and mode shapes) and the corresponding

!predictions obtained from the computational model. The identification procedure is tested for i
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_iimulated damage in the form of a symmetric cracks in a simply-supported Bernoulli-Euler beam |

and a fixed-free spring-mass model. The uniqueness and reliability of the identification process is

confirmed by solving several damage identification examl)les with specified damage positions.

Problem Statement

In this section, variational formulations for the identification of damaged one-dimensional

structures are presented. The mean square differences between measured and modeled values of

frequency and mode shape are employed as the objective function in one of the formulations. In

other words, the inverse process seeks to determine the damage parameters, location zc and size

cr, in the mathematical model to minimize the mean square difference between the test data and

analytical predictions. The problem formulations are presented in forms of a cracked Bernoulli-

Euler beam and a multi degrees of freedom (DOF) spring-mass system.

Cracked beam model

In the treatment of this problem, it is assumed that the testing information (data) is provided

from certain test points distributed over the structure. This data is comprised of fl'equency and

mode shape information associated with the lower several response modes.

For a simply-supported uniform beam containing one pair of symmetric cracks (see Fig. 1),

the problem of optimization in crack detection can be expressed, in terms of comparisons between

modeled response and test data, as

rain [normCa,'_o- 2 (2)
CY,_C

subject to constraints that define the beam response w_, (ie., the equations for free vibration), and

which prescribe appropriate normalization of w_ and test data Wto.
d-h

Here cr = 7 represents crack ratio (a measure of crack depth), and xc identifies crack

position (see Fig. 1). Also, the objective function measure of differences between measured and

modeled values of deflection and frequency in Eq. (2) is stated for present purposes in the form:

M T

norm(w2ta _ 2,,,,,,w,o- = + (3)
o:1 ra=l

where we, w_ represent the natural frequency and mode shape of ath bending fi'ee vibration

mode, M is the number of modes for which test information is available, and, once again, the

corresponding test data are symbolized by wta and wt_. Here xt,, (m = 1,2 .... , T) locates the m-th

out of T measure stations, respectively. The measures wto and w_ that appear in the norm must

be normalized on a common basis in order to facilitate comparison between the data and model

values.

The symbol ¢ is introduced to represent the square of the norm given in Eq. (3). The

identification problem now can be stated:

subject to:

r

rain • (4)
CT,._C

fot {EIQ(wg(z)) _ -w_pA w_(z)}dx = 0 (5)

T-1

- = o (6)
m=2
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cr < cr < _-Y (8)

zc < zc < _-_ (9)

where a, fl=l,...,M, g is a weighting factor on the cr and zc, R represents the upper bound on

value cr + axc, and _'_,zc, and _"f, cr represent the upper and lower bounds of tile crack (damage)

parameters zc and cr, respectively. (Note that both upper and lower bounds on the variables cr

and zc are necessary in the present problem.) Since w_ comprise an orthonormal set, rioz is defined

as
T-I

2 ]=,m _ztm, lira _Z = 0 for a # 8 (10)r/°c' = E wa T"'¢¢
m-2

The effect of cracks on the structural properties of the beam is reflected by factor Q in Eq. (5),

as described for symmetric surface cracks in Shen and Pierre [10]. Ill other words, tile optimization

parameters xc and cr cited in Eq. (4) enter the problem via Q.

According to the K-K-T (Kurash-Kuhn-Tucker) necessary conditions for the optimization

problem Eqs. (4-9), there exist Lagrange multipliers Ao, , Ao_, and Fk which satisfy the following

equations (the notation 'l-' refers to solution points):

Aa > 0

Ao_ > 0

r, [(_ + _._)- R] I.= 0

It2 (_- _)] I.= 0

[r_ (=c- _)] I.= 0

[r, (_- _c)] I.= 0

[r_ (_ -rr)l I.= 0

The solution must satisfy the following three equations as well:

(ii)

(12)

(13)

(14)

(15)

M

+E
fl=a+l

[2(wt2_ -w_) + A_pAC_] 1.= 0

It It[(EIQw.,(z)) -w_pAwo(x)] I.= 0 ;=,m < = < =,(.+,)
T-I a-1

(-2(_,o(=1- _(=11 + [2Aoo_o(_)+ _ Ao_(_)
m=2 B =1

16)

(17)

Ao_wz(x)]Axtm + 2A_,[(EIQw'(z))"- w_pAw_(x)]} 1===,.I.= 0 (18)

Note that the above equation of motion (Eq. 17) is valid interval by interval over the span of the

structure.

Finally, the conditions for stationarity of ¢ w.r.t, the optimization variables cr and zc (ie.,

the optimality conditions) are:

[_-'_. Ac,(EIfo (w'(x))2dx) + F1 - F2 + Fs] t.= 0 (19)

_=1 2
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[_-_Ao(EI[ (w"o(:_))2dz)+rl_+ra-r4] 1.=0 (20)
¢r=l

• The problem formulation for the numerical method-mean square criterion

The purpose in this subsection is to re-state the inverse cracked beam problem with mean

square criterion, Eqs. (4-9), in the following form that is more convenient for computational pur-

poses. With the introduction of symbols ( and T for convenience, the statement becomes:

subject to :

M T

min _--_[((,o _(o)2 + _-'_(wto(Xtm)- wo(x,,,,))2l
xl ct=l m=l

T T

rn=l m=l

T-1

m=2

0 < cr < 1.0

0 < xc < 1.0

where a, _ =I,...,M, variable vector x_.1 = {cr, xc,_o,Wo(Xtm)},

w2al4 pA
_o -

E I rc4

and

(21)

1

(22)

(23)

(24)

(25)

(26)

3 3

min Y']_[((u - (i) _) + _-_(fiOi- %;)2]
_.x=drn,,(i,fi, i=1 j=l

(29)

(3O)

where _i = -_ Therefore, the present damage identif, _tion problem can be stated as

fiT[K,]fii- _ifiT[llfii = 0 ;i = 1,2,3

T T

T,_ = [a4Q _ (wto(x,m)) 2 - _o _ (u,t_,(xt,,))2].Sztm (27)
rn----1 m=l

Sprinl_- mass model

The spring-mass model to which the present identification procedure is applied is shown in

Fig. 2. It consists of 3 masses connected by linear springs of stiffness defined by

kl = k(1.0- din') 3 (28)
3 "

where dmi is defined as a damage parameter at i-th spring. If dmi is interpreted to represent

the same physical meaning as cr does in the cracked beam model, the system's damage condition

may be introduced by specifying a certain value to 'damage parameters'. For instance, according

to Eq. (28), a damaged condition can be constructed in which stiffness drops 25% and 50% at

the spring 2 and 3. This is accomplished by assigning the values din2 and din3 to be 0.2743

and 0.6189, respectively. In a sense, the spring-mass model can be viewed as a simple simulation

analogy of the cracked beam, ie., both extent and location of damage can be represented in the

model. The fundamental frequencies wi of axial vibrations are related to the mode shapes ui =

(ul,u2,u3) T ,i = 1,2,3 through the equations:
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ubject to:

= o ;i = 1,2,3

_Tfij--_ij =0 ;i,j= 1,2,3

0 <_ dmi <_ 1.0

(31)

(32)

(33)

Numerical Analysis

The numerical optimization technique set forth in this study for vibrating cracked beam iden-

tification problems is accomplished using the VMCON optimization package program (this imple-

ments a sequential quadratic programming method). The VMCON program uses Powell's algorithm

which is an iterative scheme designed to converge to a point that satisfies the necessary conditions.

Additional information regarding to VMCON is available in Ref. [12].

Cracked beam model

The cracked beam model to which the identification procedure is applied is shown in Fig. 1. It

is a simply supported beam of length l equal to 18.11 of it's thickness 2d, with uniform rectangular

cross-section area A, and a pair of symmetric cracks of cr = 0.5 located at mid-span (xc = 0.5).

Unless otherwise stated, the damage properties (cr and zc) of the simply supported cracked

beams are identified by direct solution of the optimalization problems described in the previous

section. The sensitivity to chosen values for the initial crack position xc are discussed later in this

section.

• Examples with position of the crack (damage) specified

Consider the first example for crack identification, the simply supported cracked beam, for

which the crack position xc is known. In other words, only the crack ratio cr is to be identified; there-

fore, the variables in this problem are cr, (is, and mode shapes w_(x) (£l = {cr,(_,, wo(xt,n)},x_ =

{cr,_o,a_i}). This simplified example problem with the crack position specified (xc = 0.5) is

presented to demonstrate the concept of the crack identification procedure described in the last

section.

In this example, it is assumed that the dynamic measurements are co]lected at 9 test positions

(T = 9) equally spaced over the span. The first and last test stations are located at the left and

right supported end, respectively. Hence, the length of each test span Axtm,m = 1,...,T- 1 is

determined to be 36.22d In structural dynamic testing, ordinarily only a relatively small subset"T=Y'"
of the theoretically available eigenvalues and eigenvectors can be measured accurately, ie., realistic

information on higher modes is difficult to obtain from the measurements at a limited set of test

stations. Only information from the first three modes is to be used as test data in the prcsent

identification process. Furthermore, according to the observations in Shen and Pierre [10], the even

modes of a simply supported beam are not sensitive to a mid-span crack; therefore, in effect only

first and third mode (a = 1, 3) information is used to represent crack damage.

Once again, the crack identification problem presented by Eqs. 21-25 is solved here with a

specified value xc = 0.5. For given initial values of x, this optimization problem is solved to

minimize the criterion F. The results of the cases with various initial conditions are shown in

Table 1. In order to clearly compare the results, only the first three variables, (1, (3, cr, of variable

vector _1 are listed in the Table 1.

In Table 1, the top row denotes the assumed crack ratio and corresponding first and third

eigenfrequencies. The symbol • denotes the expected optimal solution through the identification

process. The first two column entries, (1,_3, indicate the fundamental and the third frequencies

corresponding to the initial crack ratio cr which is given in the next column. The last three columns

the final values corresponding to previous entry values. These final values are obtained at thelgive
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Fstage where computation is terminated when the further optimal search obtains improvements for 1

1

criterion F less than the specified tolerance (10E - 5 was adopted in the present study). Recall

that for an uncracked beam cr is identically zero. Therefore, in this example, it is decided to start
with the case of the initial value cr = 02 and for each case thereafter tlle cr value is increased by

0.1.

From the results presented in the first case of Table 1, one sees that the parameters fl ,f3, and

cr were identified to be 0.84684, 70.1348, and 0.50033 from 1.0, 81.0, and 0.0, respectively. The

mean square critera F was cut down from 118.13502 to 0A2440E-5. The maximum error is less

than 0.5% of the test data for these parameters. The results are also quite impressiv e for mode

shapes. In order to observe the global variance clearly, the initial, final, and testing mode shapes

are plotted in Fig. 3. Three curves appear on each plot: the initial mode shape, the finial mode

shape, and the mode shape from test response. The final mode shape on these plots agrees well

with the test mode shape. This is expected and verified the accuracy observed from the results in

Table 1. It can be clearly seen that accuracy of the mode shapes will worsen if higher mode results

are to be predicted. Improvement can be obtained by an appropriate adjustment of the location of

these test stations. However, a sensitivity analysis of the test stations with respect to the accuracy

of the dynamic measurements is required. This is not considered further in the present study.

In Table 1, rows 5 to 11 present the results for cases with initial cr = 0.1 to 0.8. The corre-

sponding final point values listed in the columns 4-6 show that these cases exhibit, as expected,

similar solution characteristics and accuracy. This provides a physical understanding of the geome-

try of the solution set: for the inverse cracked beam problem with specified crack position, the mean

square criterion of Eq. (21) is a convex function and it is bounded by the constraints of Eqs. (22-

25). Hence, one may conclude that the convergence of the present optimization problem is obtained

independent of the initial data chosen. In other words, as long a_ the initial data is selected within

the problem's feasible domain, an accurate and unique solution through the identification process

is expected.

Clearly the prediction of mode 3 shape shown in Fig. 3 fails to reproduce the expected sin

curve. This is because the 3rd mode shape was plotted based on the deflections of the mode shape

measured at only 9 test stations. While this reflects a limitation on how well mode shapes are

portrayed, the quality of the final result for the identification problem is unaffected.

• Simultaneous identification of crack position and depth

The second numerical example deals with the crack identification of a simply supported cracked

beam with unknown crack ratio and with crack position unknown. In this treatment, the variables

in the optimization problem are cr, ze, _s, and mode shapes w_(z) (£1 = {cr, zc,(,_, wo(zt,_)}).

Due to the limitations of the VMCON program, the examples that concerning with the testing

mode shapes wt provided in the form of continuous functions are not shown in this subsection.

The formulation of the crack identification problem (Eqs. 21-25) is tested again with both

crack position and depth are assumed unknown. In the first few cases, the simulated dynamic test

measurements are assumed to be collected at 9 equally spaced test stations (T = 9). The first

and last test positions are located at the left and right supported end, respectively. This example

will be solved a second time using an increased number of test stations, to provide information on

sensitivity of the procedure to the amount of test data.

In Table 2, the top row denotes the assumed crack ratio, crack position, and corresponding

first and third eigenfrequencies. The symbol, denotes the expected optimal solution through the

identification process. The first column entry T denotes the numbcr of test stations used to collect

dynamic measurements. The second and third column entries, (1, _3, indicate the fundamental and

the third frequencies corresponding to the initial crack ratio cr and crack position zc, which are

given in the next two columns. The last four columns provide the final values corresponding to I
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Fthe previous entry values. These final values are obtained at tile stage where the computation is I

terminated, when the optimal search obtains step-wige improvements of F less than a specified

tolerance (10E - 5 in the present study).

Table 2 shows that cases with T=9 have the final values of _ close to _', but almost all of

these cases have unacceptable final estimates of zc and cr. For instance, if tile initial position

is selected as xc = 0.4 and cr = 0.4, the values of zc and cr at tlle final iteration are 0.99789

and 0.36289 which are approximately 98% and 28% different than the given test data. In other

words, evidently the configuration with xc = 0.99789 and cr = 0.36289 is able to provide another

minimum value of the criterion (besides the one associated with the expected result). This cracked

beam configuration is shown in the solid curve of Fig. 4 . The mis-match between final and test

mode shapes can be clearly seen. This observation confirmed the unacceptable error previously

obtained in the comparison of xc and cr between the final and test data. Except for the case with

initial cr = 0.4 and xc = 0.48 which provides less than 1% estimation error, the rest of the cases

in Table 2 with 9 test stations are also found to have similarly large estimation error. Therefore a

dependable solution in crack identification is almost impossible to achieve on the basis of the 9 test

stations simulated measurement information on first and third mode response. This confirmed the

observations in Shen and Pierre [10, 11], ie., for a cracked beam with an unknown crack position,

a unique solution is not to be expected.

However, by comparing the third mode shape in Figs. 3(b) and 4(b) to the mode shape in

Fig. ll(c) of Ref. [10], it can be seen that an accurate third mode shape can not be approximated

based on the displacements collected from 9 test stations only. This implies that the accuracy of

the above computational identification might be improved if the third mode is approximated well.

Therefore, the cases with more test stations should be examined since they would clearly provide

better mode shape approximation. The largest number of test stations which can be accommodated

in the identification procedure is 45, due to the limitations of the optimization program package.

Once again, the test measurement points are equally spaced, and first and last stations are set

located at the left and right supported end, respectively. The VMCON problem formulation is

identical to the case of T=9; however, the variable vector x is expanded from 22 components to 94.

Rows 12 to 17 of Table 2 summarizes the results through the minimization process. As in the

previous cases, the final values of frequency _ are observed to be close to test values _'. Acceptable

final solution values for xc and cr are shown in the results of the cases in which initial xc and cr are

selected within the range from zc = 0.4,cr = 0.4 to zc = 0.6, cr = 0.6. On the other hand, within

this range, good agreement is also shown in mode shapes. Figures. 5 and 6 display the initial,

final, and test mode shapes for cases with the initial zc = 0.4,cr = 0.4 and xc = 0.6, cr = 0.6.

Excellent agreement is observed between the final and test mode shapes. Moreover, by comparing

the final data curve in Figs. 5 and 6 with the mode shape in Fig. ll(c) of Ref. [10], a more accurate

third mode is approximated. This indicates that more accurate information on mode shapes is

required to obtain a satisfactory solution from the identification process in the case where both

crack position and crack depth are unknown.

Questions arise concerning the conditions under which the identification procedure can pro-

vided an unique solution. As discussed in Shen and Pierre [10, 11] and concluded in the studies

of Gladwell et. al. [8], if all the mode information is used in the identification procedure, then

the system's properties can be identified uniquely. However, for practical reasons, in structural

dynamic testing only a small subset of the eigenvalues and eigenvectors can be represented in the

measurement data. Furthermore, even if substantially more modal information would be avail-

able, the minimization search may be prohibitive for such a large-dimensional feasible domain that

would result. These comments are intended to point out certain limitations inherent in the identifi-

cation procedures. These considerations is addressed with the presentation in the following, which

h
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d_scribes sufficient conditions for the unique identification from the dynamic measurements of a

multi DOF vibrating spring-mass system.

Spring-mass model

The following examples of damage identification problems were constructed by introducing the

damage through the drop in the stiffness or, more conveniently, the value of each damage parameter

to change the system's dynamics behaviour. These dynamic changes, taken as the test simulation

of response data, are used to deduce the value of each damage parameter via the identification

process.

The numerical optimization technique set forth in this study for vibrating cracked beana iden-

tification problems is accomplished using the VMCON optimization package program (this imple-

ments a sequential quadratic programming method). The damage properties (dmi,i = 1, 2,3) of

the fixed-free spring-mass system are identified by direct solution of tile optimalization problems

described in the previous section.

The first example corresponds to the identification of a system's damage, din1 = 0.0, din2 =

0.5, dm3 = 0.25, using first and second mode information. The first five variables, _1,_2, din1,

din2, and dm3 of each vector _.xare listed in Table 3. The top row denotes the assumed damage

parameters and corresponding first and second eigenfrequencies and the symbol • denotes tile

expected optimal solution through the identification process. The first and second column entries,

_1,_2, indicate the fundamental and the second frequencies corresponding to the initial damage

parameters, din1, din2, dm3, which are given in the next three columns. The last five columns give
the final values correspondingto previous entry values. These final values are obtained at the stage

of the program is terminated when the further optimal search obtain improvements F less than a

tolerance (10E - 5 was adopted in the present study).

In Table 3, each case has the final values of _ close to _', but almost all of them have the

unacceptable final results for xc and cr. Only the case with initial dine = 0.48 and din3 =

0.24 has less than a 1% estimation error. These results show performance of the present damage

identification process is generally unacceptable if only first and second modes are used.

The first six variables, _1 ,_2,_3, dml, dm2, and din3 of each vector x are listed in Table 4 the

top row denotes the assumed damage parameters and corresponding first and second eigenfrequen-

cies and the symbol • denotes the expected optimal solution through the identification process. In

this example, all the modes are used to deduce the damage conditions. Satisfactory predictions are

obtained in each case, in contrast to the results examined in Table 3. Even though starting point

is located at boundary of the feasible set (dml = 0.0, din2 = 0.0, din3 = 0.0), the agreement is still

precise. These results confirm the expectation that a unique and accurate solution predictions are

assured if all the modal information is included as data in the damage identification process.

Conclusions

A general method for damage identification of a simple beam and a spring-mass system is

presented. The method may be useful as a component of an on-line nonintrusive damage detection

technique for vibrating structures. A formulation is expressed as a direct minimization problem

statement with a criteria of the mean square difference of natural frequencies and mode shapes

between test measurements and corresponding model values. The damage identification problem

is reduced to finding the damage parameters that will satisfy appropriate constraints and minimize

the mean square difference.

The uniqueness and reliability of the identification process is confirmed by solving several

damage identification examples with specified damage positions. Without knowing the damaged

ocation, a restricted region in initial data space had been found for which there will be a realistic
r
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_and convergent solution from the identification process. This region is small, and can be expanded J

if substantially more modal information would be available, llowever, the minimization search may

be prohibitive for such a large-dimensional feasible domain that would result.
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F Test Dat_" _c_=0.84703, _c_=70.1348. cr'=0.3

Initia_Data I FindsData

_.0 81.0 !0.0,0.84684 170.:348
0.98841 80.0769 I 0.1 I 0.84607 I 70.13,t6
0.97217 t 78.813,5 i 0.2 I 0.84704 I 70.1347

0.94816 I 77.0062 I 0.3 I O.84701 i 70.1348

0.91032 I 74.3024 10.4 0.84694 I
0.73638 I 63.7848 t 0.6 0.84705 i

0.54874 I55.051I i 0.7t 0.84703 1

0.27233 I 4&0316 j 0.8 j 0.84700 I

0.50033

0.50010

0A0098

0.50007

70.1347 0.50024

70.1348 0.49962

70.1348 0.50034

70.134710.500091

Table i: Nttmencalresultsba_,don mean squareproblemstatementofEqs.(21-25)with thecrack

(damage) spec=fied(=c = 0.5).

T

9

9

9

9

9

9

Test D_ _c;=0.84703, E;=70.1348, or'=0.5, :c'=0.5 J

9

9

9

9

9

48

45

45

45

48

45

Laitiad Data

_l ]b
031806 I 78.3161

0.91371I 76.6365
0.,91158 I 75.133,5

0.91056 t 74.7464

0.91063 ( 74.5187

0.73472 I 63.8062
0.73711I64.2643

0.73617 ] 64.76190.73929 65.6727
i

0.73909 66.6112 0.6
0.754,52 74.0109 0.6

0.97475 80.2193 0.2

0.91806 I 78.5161 0.4
0.91531 I 77.2676 i 0.4

0.96219 78.5819 t 0.25

0.75452 74.0109 t 0.6

0.64083 '! _.7173 ] 0.7

0.4 0.4

0.4 t 0.43
0.4 t 0.46

0.4 0.47

0.4 0.48

0.6 0.51

0.6 0.52

0.6 0.53
0.6

Finza Data

_1 i_3 I cr 1 =c

0.69639 i 70.i359 I 0.09789 [ 0.36289
0.70007i 70.1362! 0.00440i 0.30620
0.84610 t 70.1347

0.84711170.1347

0.84704 ]70.1348

10.84704 170.1348

0.91029 t 0.53775

0.67125 i 0.49033
i 0.50554 0.49972

t 0.60027 0.50826

I 0.84704170.1348 t0.60083
I 0.84704 i 70.i348 ] 0.60141

I 030531
i 0.50534

t 0.84 I 0.84705 I 70.1348 t 0.602_ ] 0.494&9

j 0.85 I 0.84702 70.134810.9972110.24709
i0.6 0.70040 70.1363 i 0.90079 10.50307
i

!o.4 0.0o130 70.13471o94888io-9_04
10.4 0.84420170.134510.5305310.51586

10.42 0.84686] 70.1347! 0.508_8I 0.50198
f0.46 0.84643170.1348t0..81729t0.49_9

0.6 i0.84645170.1348 i0.51723 0.506_10.7 t 0.89079170.1347 !0.58805, 0,31817

Table2: Numeric,a/resultsbasedon mean squareproblemstatementofEqs.(21-25).The position

of the damage =c isa varmble.

Test D_t=" _=0.15296. _=1.2956, _¢j=2.2494,dm;=O.O, drnZ=0.5, dm-_=0.25

Imti_lDat_

0.198o61 t.5,_9 t o.o

0.18986 I 1.4975 ! 0.00.18123 I 1.4429 0.0

0.17218 I 1.3911 i 0.0
0.i627_ _._420 a.o
o.15846 I t.3o88 o.o
0.15494 i t.3047 I 0.0

Fin_ D=a

am, dm_ _s l_, dm, ldm, ' dm'0.0 0.0 0.15299 1.2956 0.21392 0.400_ 0.109"

0.1 0.05 0.152_ ] 1.2955,0.17_2,0.41741 0.132_
0.2 0.1 0.m961,.29 610.1 47810., 930.z 777
0.3 O.L5 0.152971L295810.092_ 10.4_5 0.18530
0.4 10.2 10.15293 I 1.295510.04751 t0.47_ 0.21576
0.44 )0.24 t0.15294 iz.295610.02043i 0.48978 0.23802

0.48!0.24t O.Z529Sjz.20SO,O00073{0.49811!0.24281

Table3: Numericalresultsforspnng-mass model using_rstand secondmode in,formation.



l(]_J

•--m_ ,Tnc_..=:x.,acton_Conie."_nc_oninv_--_¢'Z)e.sl_nConches a_(:tC'x)urn_z_non_n_n__me,_nngSc:cnc_s

J

0.198O6

0.189_5

0.18123

0.17218

O. 16275

0.15494

Test Da,ta.: ,c_=0.IS296. _=t.2OS6, ,]-._..494,¢°-"._ Jm:=O.O, ,z=m._=0.5,...=m'=0.25,

£ama= Daxa. ! Fi_,= DaLa.

1.3549 _ 3.2469 j 0.0 i 0.0 _ 0.0 i 0.15294 I '..2966 b 2.2494 [ 0.0002 t O.500l

L4975 i 3.0209 f 0.0 ; O.l 0.05 I 0.15294 I 1.2953 , 2.2494 I 0.0002 I O.SOOi

L4429 t 2.8086 I 0.0 , 0.2

:.3911 i 2.5095 I 0.0 _ 0.3

L3420 I Z47..32 t 0.0 ! 0.4

;..2088 i 2.3329 t 0.0 ¢ 0A4

L3046 i 2.2332 I 0.0 _ 0.48

0.1 0.15242 I )..L.r._953122494 I 0.0067 t 0.5026

0..t_,265 , L2:953 i 2.2494 I 0.0039 I 0.501.5

0.2498 '1

0.2442 rl

0.15 0.2494 :i

0.2 0.15280 i I.-"-'-'-'-'-'-'-'-_gCw,_, 2.2494 I 0.0019 ( 0.5008 0.2484 ,I

0.24 0.15295 I /..2956 { 2.2494 I 0.0000 f 0.5002

0.15292 _ L'._$_ I 2.2494 _ 0.0004 : 0.50020.24

0.2499 ,(

0.2496 'I

Table 4: NumencaJ re_=|_ /or spn=_.m==, modeJ =ua& _1 three ,-ode =n(orm&¢ioa.

Y

2b

=_ =- _._t..a _,m_

F;E.re I. _,,eometry n( • eimply 0_=ppoHed l_am ¢_t.ti_|_g • p_}r o[ =y'mme/rir _|_e cr.¢ks a(
mi,I _p*n, zc = _.

kl

113

F;Sure 2. Oeome/_.y of • 3 I)OF ipri,l¢ m_. be=m model
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